Сфингомиелины. Сфинголипиды, их биосинтез и биологическая роль К чему приводит нехватка сфингомиелина в мозгу

глицерофосфолипиды. Структурная основа глицерофосфолипидов - глицерол. Глицерофосфолипиды молекулы, в которых две жирные кислоты связаны сложноэфирной связью с глицеролом в первой и второй позициях; в третьей позиции находится остаток фосфорной кислоты, к которому, в свою очередь, могут быть присоединены различные заместители, чаще всего аминоспирты. Если в третьем положении имеется только фосфорная кислота, то глицерофосфолипид называется фосфатидной кислотой. Её остаток называют "фосфатидил" ; он входит в название остальных глицерофосфолипидов, после которого указывают название заместителя атома водорода в фосфорной кислоте, например фосфатидилэтаноламин, фосфатидилхолин и т.д. Фосфатидная кислота в свободном состоянии в организме содержится в небольшом количестве), но является промежуточным продуктом на пути синтеза как три-ацилглицеролов, так и глицерофосфолипидов. У глицерофосфолипидов, как и у триацилгли-церолов, во второй позиции находятся преимущественно полиеновые кислоты; в молекуле фосфатидилхолина, входящего в структуру мембран, это чаще всего арахидоновая кислота. Жирные кислоты фосфолипидов мембран отличаются от других липидов человека преобладанием полиеновых кислот (до 80-85%), что обеспечивает жидкое состояние гидрофобного слоя, необходимое для функционирования белков, входящих в структуру мембран.

Общая формула глицерофосфолипидоввыглядит так:

В отличие от триглицеридов в молекулефосфатидилхолинаодна из трехгидроксильных группглицеринасвязана не с жирной, а сфосфорной кислотой. Кроме того,фосфорная кислотав свою очередь соединена эфирной связью сазотистым основанием–холином[НО-СН 2 -СН 2 -N + (CH 3) 3 ]. Таким образом, вмолекулефосфатидил-холина соединеныглицерин,высшие жирные кислоты,фосфорная кислотаихолин:

Фосфатидилэтаноламины . Основное различие между фосфатидилхоли-нами ифосфатидилэтаноламинами– наличие в составе последнихазотистого основанияэтаноламина(HO-CH 2 -CH 2 -N + H 3):

Из глицерофосфолипидовворганизмеживотных и высших растений в наибольшем количестве встречаютсяфосфатидилхолиныи фосфатидил-этаноламины. Эти 2 группыглицерофосфолипидовметаболически связаны друг с другом и являются главными липидными компонентамимембранклеток.

Фосфатидилсерины . Вмолекулефосфатидилсеринаазотистым соединением служит остатокаминокислотысерина

Фосфатидилсериныраспространены гораздо менее широко, чем фос-фатидилхолины и фосфоэтаноламины, и их значение определяется в основном тем, что они участвуют в синтезефосфатидилэтаноламинов.

Фосфатидилинозитолы. Этилипидыотносятся к группе производных фосфатиднойкислоты, но не содержатазота. Радикалом (R 3) в этом подклассеглицерофосфолипидовявляется шестиуглеродный циклическийспиртинозитол:

Фосфатидилинозитолы довольно широко распространены в природе. Они обнаружены у животных, растений и микроорганизмов. В животноморганизменайдены в мозге,печении легких.

Вопрос 36.Сфинголипиды. Строение и роль.

Сфинголипиды

Аминоспирт сфингозин, состоящий из 18 атомов углерода, содержит гидроксильные группы и аминогруппу. Сфингозин образует большую группу липидов, в которых жирная кислота связана с ним через аминогруппу. Продукт взаимодействия сфингозина и жирной кислоты называют "церамид" ). В церамидах жирные кислоты связаны необычной (амидной) связью, а гидроксильные группы способны взаимодействовать с другими радикалами. Церамиды отличаются радикалами жирных кислот, входящих в их состав. Обычно это жирные кислоты с большой длиной цепи - от 18 до 26 атомов углерода. Существует 3 основных типа сфинголипидов:

Церамиды - это наиболее простые сфинголипиды. Они содержат только сфингозин, соединённый с жирнокислотным ацильным остатком.

Сфингомиелины содержат заряженную полярную группу, такую как фосфохолин или фосфоэтаноламин.

Гликосфинголипиды содержат церамид, эстерифицированный по 1-гидрокси-группе остатком сахара. В зависимости от сахара гликосфинголипиды подразделяются нацереброзиды и ганглиозиды.

Цереброзиды содержат в качестве остатка сахара глюкозу или галактозу.

Ганглиозиды содержат трисахарид, причём один из них всегда сиаловая кислота.

Биол. роль сфинголипидов разнообразна. Известно, что они участвуют в формировании мембранных структур аксонов, синапсов и др. клеток нервной ткани, опосредуют в организме механизмы узнавания, рецепторные взаимодействия, межклеточные контакты и др. жизненно важные процессы.

Это наиболее распространенные сфинголипиды. В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Сфингомиелины обнаружены также в ткани почек, печени и других органов. При гидролизе сфингомиелиныобразуют одну молекулу жирной кислоты, одну молекулу двухатомного ненасыщенного спирта сфингозина, одну молекулу азотистого основания(чаще это холин) и одну молекулу фосфорной кислоты. Общую формулу сфингомиелинов можно представить так:

Вопрос 37. Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в мозге. Главной формой гликолипидов в животных тканяхявляются гликосфинголипиды. Последние содержат церамид, состоящий из спирта сфингозина и остатка жирной кислоты, и один или несколько остатков сахаров. Простейшими гликосфинголипидами являются галактозилцерамиды и глюкозилцерамиды.

Галактозилцерамиды – главные сфинголипиды мозга и других нервных тканей, но в небольших количествах встречаются и во многих других тканях. В состав галактозилцерамидов входит гексоза (обычно это D-галактоза), которая связана эфирной связью с гидроксильной группой аминоспиртасфингозина. Кроме того, в составе галактозилцерамида имеется жирная кислота. Чаще всего это лигноцериновая, нервоновая или це-реброноваякислота, т.е. жирные кислоты, имеющие 24 углеродных атома.

Существуют сульфогалактозилцерамиды, которые отличаются от га-лактозилцерамидов наличием остатка серной кислоты, присоединенного к третьему углеродному атому гексозы. В мозге млекопитающих сульфо-галактозилцерамиды в основном находятся в белом веществе, при этом содержание их в мозге намного ниже, чем галактозилцерамидов.

Глюкозилцерамиды – простые гликосфинголипиды, представлены в тканях, отличных от нервной, причем главным образом глюкозил-церамидами. В небольших количествах они имеются в ткани мозга. В отличие от галактозилцерамидов у них вместо остатка галактозы имеется остаток глюкозы. Более сложными гликосфинголипидами являются ганглиозиды, образующиеся из гликозилцерамидов. Ганглиозиды дополнительно содержат одну или несколько молекул сиаловой кислоты. В тканях человека доминирующей сиаловой кислотой является нейраминовая. Кроме того, вместо остаткаглюкозы они чаще содержат сложный олигосахарид. Ганглиозиды в больших количествах находятся в нервной ткани. Они, по-видимому, выполняют рецепторные и другие функции. Одним из простейших ганглиозидов является гематозид, выделенный из стромы эритроцитов. Он содержит церамид(ацилсфингозин), одну молекулу глюкозы, одну молекулу N-ацетилнейраминовой кислоты.

Вопрос 38. ХОЛЕСТЕРОЛ - важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций.В организме человека это основной стероид, остальные стероиды - его производные. Растения, грибы и дрожжи не синтезируют холестерол, но образуют разнообразные фитостеролы и микостеролы, не усваиваемые организмом человека. Бактерии не способны синтезировать стероиды. Холестерол входит в состав мембран и влияет на структуру бислоя, увеличивая её жёсткость. Из холестерола синтезируются жёлчные кислоты, стероидные гормоны и витамин D3. Нарушение обмена холестерола приводит к развитию атеросклероза. Холестерол представляет собой молекулу, содержащую 4 конденсированных кольца, обозначаемые латинскими буквами А, В, С, D, разветвлённую боковую цепь из 8 углеродных атомов в положении 17, 2 "ангулярные" метильные группы (18 и 19) и гидроксильную группу в положении 3. Присоединение жирных кислот сложноэфирной связью к гидроксильной группе приводит к образованию эфиров холестерола. В неэтерифицированной форме холестерол входит в состав мембран различных клеток. Гидроксильная группа холестерола обращена к водному слою, а жёсткая гидрофобная часть молекулы погружена во внутренний гидрофобный слой мембраны. В крови 2/3 холестерола находится в этерифицированной форме и 1/3 - в виде свободногохолестерола. Эфиры холестерола служат формой его депонирования в некоторых клетках (например, печени, коры надпочечников, половых желёз). Из этих депо холестерол используется для синтеза жёлчных кислот и стероидных гормонов.

Сфингомиелин

Первая часть слова "сфинго" свидетельствует о том, что в состав молекулы входит вместо глицерина двухатомный ненасыщенный спирт - сфингозин. Наиболее широко распространенным в организме представителем этой группы соединений является сфингомиелин Сфингомиелин обнаружен в мембранах растительных и животных клеток; особенно богата сфингофосфолипидами нервная ткань, и в частности, мозг.

Характерной особенностью фосфолипидов является их дифильность, то есть способность растворяться как в водной среде, так и в нейтральных липидах. Это обусловлено наличием у фосфолипидов выраженных полярных свойств. При рН 7,0 их фосфатная группа всегда несет отрицательный заряд. Азотсодержащие группировки в составе фосфатидилхолина (холин) и фосфатидилэтаноламина (этаноламин) при рН 7,0 несут положительный заряд. Таким образом, при рН 7,0 эти глицерофосфолипиды представляют собой биполярные цвиттерионы и их суммарный заряд равен нулю. Остаток серина в молекуле фосфатидилсерина содержит -аминогруппу и карбоксильную группу. Следовательно, при рН 7,0 молекула фосфатидилсерина имеет две отрицательно и одну положительно заряженных группы и несет суммарный отрицательный заряд.

В то же время, радикалы жирных кислот в составе фосфолипидов не имеют электрического заряда в водной среде и таким образом обусловливают гидрофобность части молекулы фосфолипида. Наличие полярности за счет заряда полярных групп обусловливают гидрофильность. Поэтому на поверхности раздела масло-вода фосфолипиды располагаются таким образом, чтобы полярные группы находились в водной фазе, а неполярные группы - в масляной. За счет этого в водной среде они образуют бимолекулярный слой, а при достижении некоторой критической концентрации - мицеллы.]

На этом основано участие фосфолипидов в построении биологических мембран.

Обработка находящегося в водной среде дифильного липида ультразвуком приводит к образованию липосом. Липосома представляет собой замкнутый липидный бислой, внутри которого оказывается часть водной среды. Липосомы находят применение в клинике, косметологии в качестве своеобразных контейнеров и переносчиков лекарств, питательных веществ к определенным органам и для комбинированного действия на кожу.

Функциональная роль фосфолипидов не ограничивается их участием в построении биомембран. Так, они являются регуляторами активности ферментов. К примеру, фосфатидилхолин, фосфатидилсерин, сфингомиелин активируют или ингибируют активность ферментов, катализирующих процессы свертывания крови. Регуляторная функция липидов заключается в том, что ряд гормонов (половые, гормоны коры надпочечников) являются производными липидов. Кроме того фосфолипиды

Выполняют детергентную функцию в кишечнике и желчном пузыре. Они являются важным структурным компонентом желчи, наряду со свободным холестеролом и с желчными кислотами. Изменение соотношения любого из этих компонентов приводит к осаждению и формированию желчных камней. Фосфолипиды - это также важный компонент смешанных мицелл, которые образуются в ходе переваривания липидов.

Является источником арахидоновой кислоты - предшественника эйкозаноидов

Являются источниками вторичных мессенджеров - диацилглицерола и инозитолтрифосфата, о чем уже упоминалось выше

Обеспечивают прикрепление белков к мембране. Некоторые внеклеточные белки прикрепляются к внешней стороне плазматической мембраны за счет образования ковалентных связей с фосфатидилинозитолом. Примером таких белков могут служить ферменты: щелочная фосфатаза, липопротеин липаза, холинэстераза.

Принимают участие в формировании транспортных форм других липидов

Могут выполнять энергетическую функцию

Явяляются компонентом сурфактанта легких (см. ниже)

Церамиды –самый простой тип сфинголипидов, состоящих из сфингозина (или некоторых его производных) и жирной кислоты(являются важным липидным компонентом клеточной мембраны)

Формула сфингомиелина:
Сфингомиелин
- это тип сфинголипида, который находится в клеточной мембране животных. Особенно этим фосфолипидом богата миелиновая оболочка аксонов нервных клеток.
Сфингомиелин представляет собой единственный фосфолипид человека, основа которого не включает глицериновый остаток. Сфингомиелин состоит из сфингозина, соединённого сложноэфирной связью с полярной группой. Полярная группа может быть фосфохолин или фосфоэтаноламин. Ко второму углероду сфингозина за счёт амидной связи присоединена жирная кислота.

2.Реакция образования ацетона.
Ацето́н
- органическое вещество, имеющее формулу CH 3 -C(O)-CH 3 , простейший представитель насыщенных кетонов.
Ацетон, который образуется при неферментативном декарбоксилировании ацетоацетата, в организме не используется. Он выводится с выдыхаемым воздухом, секретом потовых желёз и мочой. В норме концентрация ацетона в крови мала и обычными реакциями не определяется.

Кетоновые тела синтезируются в печени, легко проходят через митохондриальные и клеточные мембраны и поступают в кровь. Кровью они транспортируются во все другие ткани. Используются только ацетоацетат и бета-гидроксибутират.

3. Дать общую характеристику строения ацилсинтетазы и ее активных центров.
Реакции синтеза жирных кислот с участием этого фермента.

В биосинтезе насыщенных жирных кислот участвуют два ферментных комплекса: ацетил-КоА карбоксилаза и ацилсинтетаза.
Синтетаза ЖК содержит 7 активных центров.

Ацилсинтетазный мультиферментный комплекс содержит ацилпереносящий белок (АПБ) в качестве своеобразного ядра,активный центр представлен фосфопантотеином . Другими ферментами комплекса являются β-кетоацилсинтетаза (КС) – самый крупный домен ацилсинтетеазы (N-концевой), его ферментная активность обеспечивает единственную необратимую реакцию всего процесса, ацилтрансфераза (АТ) – переносит кислотный остаток с Ацил-КоА на HS-группупантотеиновой части АПБ-домена, β-кетоацилредуктаза (КР) , В-гидроксиацилдегидратаза (ГД) , еноилредуктаза (ЕР) и ацилтрансацетилаза (АТ).

После этого ацил-АПБ вступает в новый цикл синтеза. К свободной SH-группе ацилпереносящего белка присоединяется новая молекула малонил-КоА. Затем происходит отщепление ацильного остатка, и он переносится на малонильный остаток с одновременным декарбоксилированием, и цикл реакций повторяется.

Таким образом, углеводородная цепочка будущей жирной кислоты постепенно растет (за каждый цикл – на два углеродных атома). Это происходит до момента, пока она не удлинится до 16 углеродных атомов (в случае синтеза пальмитиновой кислоты) или более (синтез других жирных кислот). Вслед за этим происходит тиолиз, и образуется в готовом виде активная форма жирной кислоты – ацил-КоА.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОГО АГЕНТСВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ

сфинголипиды.

Их биосинтез и биологическая роль

Никитин Павел 112 группа

Сфинголипидами называется группа сложных липидов, основой молекулы которых являются алифатические аминоспирты, из которых наиболее распространены сфингозин и церебрин.

СH3 (CH2)12 CH CH CH CH CH2OH СH3 ; (CH2)12 CH2 CH CH CH CH2OH

OH NH2 OH OH NH2

сфингозин церебрин (фитосфингозин)

Сфинголипиды делят на 2 основные группы:

    Сфингофосфолипиды содержащие остатки фосфорной кислоты и холина (сфингомиелины) или фосфорной кислоты и инозитилгликозида (фитосфинголипиды);

    сфингогликолипиды содержащие моносахариды (обычно галактозу), или олигосахариды (цереброзиды); и остатки сиаловых кислот (ганглиозиды).

Сфингомиелины являются наиболее распространенными сфинголипидами. Они в основном находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань; сфингомиелины обнаружены также в тканях почек, печени и других органов. При гидролизе сфингомиелины образуют одну молекулу жирной кислоты, одну молекулу жтрной кислоты, одну молекулу двухатомного ненасыщенного аминоспирта сфингозина, одну молекулу азотистого основания (чаще это холин) и одну молекулу фосфорной кислоты, именно поэтому сфингомиелины относятся к классу фосфолипидов. Общая структура сфингомиелинов выглядит так:

Конформация молекулы сфингомиелина в определенном отношении сходна с конформацией глицерофосфолипидов. Молекула сфингомиелина содержит полярную «головку», которая несет одновременно и положительный (остаток холина), и отрицательный (остаток фосфорной кислоты) заряд, и два неполярных «хвоста» (длинная алифатическая цепь сфингозина и этерифицированная жирная кислота). Следует заметить, что в некоторых сфингомиелинах, например выделенных из мозга и селезенки, вместо сфингозина найден спирт дигидросфингозин (восстановленный сфингозин).

Гликолипиды - сложные липиды, содержащие в составе молекулы углевод­ные группы (чаще остаток D-галактозы). Гликолипиды играют существенную роль в функционировании биологических мембран. Они содержатся преимущественно в ткани мозга, но имеются также и в кровяных клетках и других тканях. Известны три ос­новные группы гликолипидов: цереброзиды, сульфатиды и ганглиозиды.

Цереброзиды не содержат ни фосфорной кислоты, ни холина. В их состав входит гексоза (обычно это D-галактоза), которая связана эфирной связью с гидроксильной группой аминоспирта сфингозина. Кроме того, в состав цереброзида входит жирная кислота. Среди этих жирных кислот чаще всего встречается лигноцериновая, нервоновая и цереброновая кислоты, т. е. жирные кислоты, имеющие 24 углеродных атома. Структура цереброзидов может быть представлена следующей схемой;

Наиболее изученными представителями цереброзидов являются нервон, содержащий нервоновую кислоту, цереброн, в состав которого входит цереброновая кислота, и керазин, содержащий Глигноцириновую кислоту. Особенно велико содержание церебро­зидов в мембранах нервных клеток (в миелиновой оболочке).

Ганглиозиды При гидролизе ганглиозидов можно обнаружить высшую жирную кислоту, спирт сфингозин, D-глюкозу и D-галактозу, а также производные аминосахаров: N-ацетилглюкозамин и N-ацетил-нейраминовую кислоту. Последняя синтезируется в организме из глюкозамина и имеет следующую формулу:

В структурном отношении ганглиозиды в значительной мере сходны с цереброзидами, с той только разницей, что вместо одного остатка галактозы они содержат сложный олигосахарид. Одним из простейших ганглиозидов является гематозид, выделенный из стромы эритроцитов:

В отличие от цереброзидов и сульфатидов ганглиозиды находятся преимущественно в сером веществе мозга и сосредоточены в плазматических мембранах нервных и глиальных клеток.

Все рассмотренные выше липиды принято называть омыляемыми, поскольку при их гидролизе образуются мыла.

Биосинтез сфинголипидов

Сфинголипиды могут синтезироваться из других соединений. Для их синтеза нужен в первую очередь сфингозин, который образуется в ходе нескольких последовательных реакций из пальмитоил-КоА и серина; необходимы активированные жирные кислоты в виде ацил-КоА-производных; необходимы также
или активированный холин в виде ЦДФ-холина для синтеза сфингомиелинов, или активированные мономеры углеводной природы в виде их УДФ-производных для синтеза цереброзидов или ганглиозидов.

Биологическая роль

I. участие в работе иммунной системы

а) Метаболизм сфинголипидов в клетках иммунной системы и образование вторичных липидных мессенджеров - церамида, сфингозина, сфингозин-1-фосфата и церамид-1-фосфата - являются частью единой сигнальной системы, контролирующей созревание, дифференцировку, активацию и пролиферацию лимфоцитов в ответ на антигены и митогены и программированную гибель клеток после осуществления эффекторной функции.

б) Продукты сфингомиелинового цикла, а также ингибитор церамидсинтазы - фумонизин В1 - влияют на экспрессию поверхностных антигенов Т лимфоцитов - CD3 , CD4 , CD8 , CD25 , CD45 , изменяют баланс между субпопуляциями лимфоцитов, ингибируют синтез ДНК в нормальных клетках тимуса и селезенки и пролиферативный ответ на митогены и супрессируют развитие иммунного ответа на Т-зависимые антигены in vivo.

Ранние фазы первичного иммунного ответа характеризуются пролиферацией специфических предшественников в особом микроокружении лимфоидной ткани, дифференцировкой в эффекторные лимфоциты и миграцией из лимфоидных органов в кровь и ткани. Миграция Т лимфоцитов, в частности, зависит от распределения антигена в нелимфоидных органах и локальной активации лимфоцитов молекулами моно нуклеарных систем.

в) Влияет на экспрессию молекул адгезии и МНС, а также на факторы миграции клеток, сфинголипиды регулируют направленное движение активированных лимфоцитов в ткани. Взаимодействие всех типов клеток-эффекторов приводит к выведению чужеродного антигена из организма. Действие сфинголипидов реализуется на уровне мишеней, общих для сигнальных путей ТСR/СD3-комплекса и сфингомиелинового цикла. Сфинголипиды являются важнейшей и незаменимой частью иммунной системы, и как следствие важной частью всего организма.

II- Участие в строении и функционировании клеточных мембран.

Сфинголипиды имеются в мембранах животных и растительных клеток; они - основной компонент миелиновой оболочки мякотных нервов и липидов мозга. В жировых отложениях почти не содержатся.

Применение в медицине

Сфинголипиды применяются для лечения онкологических заболеваний. Многие типы опухолевых клеток и новообразований могут быть уничтожены воздействиями, приводящими к повышению концентрации сфинголипида церамида. Существует много способов увеличить количество cфинголипида церамида в опухоли, но их применение осложняется тем, что cфинголипид церамида выполняет центральную роль в гомеостазе клетки: легко метаболизируется с образованием других сфинголипидов, способствующих росту опухоли, метастазированию и противодействию иммунной системе пациента. Отмечена необходимость предотвращения такой метаболической конверсии на фоне одновременной активации ферментов, участвующих в синтезе cфинголипида церамида, описаны ферменты, которые следует активировать или ингибировать, а также лекарства, метаболиты и компоненты рациона, модифицирующие каждый фермент. Освещена важность аллильной спиртовой группы в молекуле cфинголипида церамида и ряде противоопухолевых агентов, указано, что гидроксильная группа участвует в переносе фосфата от белка к белку путем образования эфира фосфата. Аллильная гидроксильная группа может также сокращать число кетонов в митохондриальных убихинонах с образованием реактивных форм кислорода. Уровень cфинголипида церамида в опухолях может быть повышен за счет прямого введения cфинголипида церамида или его аналогов; стимуляции образования cфинголипида церамида из его предшественников; путем гидролиза сфингомиелина или гидролиза гликосфинголипидов; ацилирования сфингозина. Кроме того, более высокая концентрация cфинголипида церамида может быть обусловлена замедлением его конверсии в сфингомиелин.

Основными подклассами плазмалогенов являются фосфатидальхолины, фосфатидальэтаноламины и фосфатидальсерины. В разбавленных кислотах они гидролизуются с образованием альдегида соответствующего α,β-ненасыщенного спирта, то есть при кислотном гидролизе плазмалогенов образуются «жирные» альдегиды, называемые плазмалями, что и легло в основу термина «плазмалоген». Плазмалогены также входят в состав мембран мышц, нервных клеток, эритроцитов.

Некоторые, открытые сравнительно недавно фосфатиды, не содержат азотис­того основания, место которого в молекуле в этом случае занимают глицерин и его производные:

Фосфатидилглицерин является обязательной составной частью хлоропластов и в небольших количествах присутствует в бактериальных клетках и тканях жи­вотных.

Кардиолипин - одно из необходимых соединений в соста­ве митохондриальных мембран, особенно в митохондриях сердечной мышцы.

Сфинголипиды

Другой группой фосфолипидов являются сфинголипиды. В их состав вместо глицерина входит высший двухатомный ненасыщенный аминоспирт сфингозин (число углеродных атомов 18, двойная связь имеет транс-конфигурацию). Гидроксильные группы расположены у первого и третьего углеродного атомов, аминогруппа находится при втором атоме углерода цепи, двой­ная связь - при четвертом атоме углерода:

Сфингозин

Отличие сфинголипидов от глицерофосфолипидов и в том, что жир­ные кислоты соединяются в них не с гидроксильными группами, а с аминогруппами аминоспирта, образуя амидные связи (-СО-NH-).Эта связь образуется между карбоксильной группой жирной кислоты и аминогруппой спирта. В сфинголипидах в значи­тельных количествах обнаружены лигноцериновая и нервоновая кислоты.

При гидроксильной группе в положении 1 в сфинголипидах имеет­ся остаток фосфорной кислоты, который в свою очередь этерифицирован с молекулой азотистого соединения - чаще всего с холином. Общая структура сфингомиелинов выглядит так:

Cфингомиелин

Общий план построения молекулы сфингомиелина в определенном отношении напоминает строение глицерофосфолипидов. Молекула сфин-гомиелина содержит как бы полярную «головку», которая несет одновременно и положительный (остаток холина), и отрицательный (остаток фосфорной кислоты) заряды, и два неполярных «хвоста» (длинная алифатическая цепь сфингозина и ацильный радикал жирной кислоты).

Сфингомиелины являются самыми распространенными сфинголипидами. Они находятся, в основном, в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Собственно название сфингомиелины отражает их функцию в живых тканях, где они образуют миелиновую оболочку вокруг нервных волокон в тканях печени, почек и других органов.

В некоторых сфингомиелинах, например выделенных из мозга и селезенки, вместо сфингозина найден спирт дигидросфингозин (восстановленный сфингозин):

СН 3 -(СН 2) 14 -СН-СН-СН 2 -СН 2 ОН

Дегидросфингозин

Из фосфолипидов растительно­го происхождения (из кукурузного зерна) выделен аминоспирт, весьма похожий на сфингозин:

Фитосфингозин

Этот же спирт найден в дрожжах и грибах, а недавно в мозге и почках челове­ка, что указывает на возможность существования аналогичных фосфолипидов в растительных и животных объектах.

Сфингофосфолипиды не растворимы в серном эфире, что используют при их отделении от фосфатидов. Они характеризуются также трудной растворимостью в ацетоне и большей устойчивостью к действию окислителей, чем фосфатиды.

Сфинголипидам свойственны весьма сложные пространственные конфигура­ции, связанные с возможностью оптической изомерии (два асимметричных угле­родных атома в молекуле) и цис-транс-изомерии по месту двойной связи. Этим объясняется их органная и видовая специфичность. Кроме того, установлено, что органная специфичность сфинголипидов зависит от качественного состава высших жирных кислот: так, для сфинголипидов мозга характерно присутствие нервоновой кислоты.

Гликолипиды

Вторую группу сложных липидов образуют гликолипиды (от греч. glykys-сладкий и липиды). Они характеризуются тем, что полярная моно- или олигосахаридная составляющая (глюкоза, галактоза, глюкозамин, галактозамин, их N-ацетильные производные и др.) через остаток многоатомного спирта (глицерин, сфингозин) соединяется с неполярными радикалами высших жирных кислот (пальмитиновой, стеарино­вой, олеиновой, лигноцериновой, нервоновой, цереброновой и др.) гликозидной исложноэфирной связями.

В зависимости от природы липидной части гликолипиды можно разделить на четыре группы:

1) гликозилдиглицериды, липидная часть которых представляет собой остаток глицерина, ацилированный в положения 1 и 2 высшими жирными кислотами;

2) гликосфинголипиды, в которых липидным фрагментом является церамид - остаток высшего аминоспирта (сфингозинового основания), N-ацилированного высшей жирной кислотой;

3) полипренилфосфатсахара, у которых липидная часть молекулы представляет собой остаток полипренола Н(СН 2 С(СН 3)=СНСН 2) n ОН;

4) гликолипиды микроорганизмов, в состав которых входят остатки высших жирных кислот, ацилирующих остатки сахаров или неуглеводных компонентов молекулы.

Подавляющее большинство гликолипидов относятся к первым двум группам и являются важными компонентами мембран.

Церамиды - основа гликолипидов. Водород в гидроксильной группе церамида может быть замещён на разные угле­водные фрагменты, что определяет принадлеж­ность гликолипида к определённому классу.