Исследовательская работа "электричество в живых организмах". Презентация на тему "электричество в живой природе" Использование в научных исследованиях

Человек стал использовать электричество совсем недавно, каких-нибудь сто с небольшим лет назад. В животном мире электричество используется уже много миллионов лет. Некоторые виды рыб способны производить электрический ток. Разряды электрического тока они применяют для умерщвления жертвы, для защиты от врагов и... для общения.

Электрический сом

Кошачьи акулы способны обнаружить по местному изменению электрического поля Земли добычу, зарывшуюся в придонный ил, с помощью специальных органов чувств (так называемых ампул Лоренцини), разбросанных по поверхности тела, особенно вблизи головы.

Африканские рыбаки ощущают на себе мощность электричества сома, когда он попадается к ним на крючок. Ток от рыбы движется по леске, по удилищу и бьет по рукам рыбака. К счастью, удар электричеством сома не смертелен. Но бывали случаи, когда наступивший на электрического сома человек терял на некоторое время сознание.

Другие рыбы не только чувствительны к изменениям электрических полей среды, но и сами способны генерировать ток малой или большой силы. Распространенный на востоке Атлантики и в Средиземном море обыкновенный скат достигает в длину 60 см и дает разряды в 50 вольт. Этого бывает достаточно, чтобы оглушить или убить составляющих его пищу мелких рыбешек и рачков. Для человека обыкновенный скат практически не опасен. Небольшие электрические разряды этой рыбы ощущаются для него как сильный щипок. Гораздо опаснее самый крупный скат из рода Торпедо, который также обитает в Атлантическом океане и Средиземном море. Длина этой рыбы достигает двух метров, а весит она около 100 кг. Этот гигант среди электрических скатов способен образовывать электрический ток напряжением до 200 вольт. Разряд электрического тока такой мощности, тем более в соленой воде, способен основательно потрясти человека.

В водах знаменитой африканской реки Нил живет электрический сом. Эта крупная толстая рыба может достигать в длину одного метра. Спина у нее темно-коричневая, бока бурые, а брюхо желтое. Эта ленивая малоподвижная рыба большую часть своей жизни проводит лежа на дне. Мощность электрического «прибора» сома очень велика и может быть больше, чем в городской бытовой электросети.

Электрический угорь

На другом континенте, в Южной Америке, живет электрический угорь. Это длинная округлая рыба с гладкой, без чешуи, кожей. Обычно его длина не превышает одного метра. Иногда встречаются электрические угри длиной до трех метров. Окраска угрей зеленовато-коричневая. Горло - ярко-оранжевого цвета.

Электрический угорь создает самое мощное напряжение. У крупных особей мощность электрических разрядов может достигать 660 вольт. Это почти в три раза больше, чем в квартирной розетке.

Свое электричество угорь использует в основном для умерщвления жертвы. Приблизившись к рыбе или лягушке, электрический угорь пускает в ход свое грозное оружие, и жертва оказывается парализованной или умерщвленной. Угорь неспешно приближается к обездвиженной жертве и проглатывает ее.

Нильский сомик-длиннорыл использует электричество для обнаружения своих врагов. У него в хвосте имеется электрический «приборчик», с помощью которого он образует постоянное электрическое облачко вокруг своего тела. Стоит какому-нибудь животному войти в это облачко, как длиннорыл сразу почувствует неладное. По изменению электрического облачка он может определить не только размеры объекта, но и его форму. Исследовав незваного гостя, рыбка решает, что ей предпринять: или поскорее удрать, или поглубже зарыться в ил, или оставаться на месте.

Электрический скат

Постоянная среда обитания рыб - вода - обладает большой электропроводностью. По этой причине электрические поля, вырабатываемые живыми генераторами, достигают чувствительных клеток других рыб почти без потерь, и, таким образом, появляется возможность передачи электрического сигнала на значительное расстояние.

У электрических рыб первые удары самые сильные, а последующие становятся все слабее и слабее. Чтобы снова производить сильные электрические удары, рыбе необходимо подзарядиться: полежать спокойно на дне.

С помощью электричества рыбы могут «переговариваться» на расстоянии 7-10 метров. Двух нильских сомиков помещали в аквариум, разделенный слоем материи, чтобы рыбы не могли видеть друг друга. С помощью специальных приборов удалось установить, что рыбы постоянно общались между собой посредством электрических сигналов. Если одну рыбу беспокоили - трогали палочкой, она заявляла протест образованием электрических разрядов. Вторая тоже не оставалась безучастной.

В природе при разделе территории сомики разряжают свои электрические батареи выстроившись напротив друг друга. Если же силы неравны, то один длиннорыл подавляет разряды противника просто «не давая ему сказать слова», и тот поспешно от ступает. В драках сомики стараются откусить противнику хвостовой стебель с жизненно важным электрическим органом.

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

МОСКОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ

Электрические процессы в живых организмах

Боголюбова Александра Евгеньевна, студентка 1 курса

Руководитель : Мокрова Ирина Иннокентьевна, преподаватель физики

Образовательная организация: ГБПОУ Московский технологический колледж

2015г

г.Москва

Содержание

Введение.

2.Электрические токи в живых организмах

2.1. Электрические рыбы

2.1.1.Электрический угорь

2.1.2.Электрический сом

2.1.3.Электрический скат

2.3.1.Общая характеристика действия тока на тело человека

2.3.5. Действие зарядов лейденской банки на человека

2.3.6. Изобретение дефибриллятора постоянного тока

2.3.7. Электролечение

2.3.8.Метод Фолля

Заключение

Введение

С давних времен человек пытался понять явления в природе. Много гениальных гипотез, объясняющих происходящее вокруг человека, появилось в разное время и в разных странах. Мысли греческих и римских ученых и философов, живших еще до нашей эры: Архимеда, Евклида, Лукреция, Аристотеля, Демокрита и других - и сейчас помогают развитию научных исследований.

Способность некоторых животных вырабатывать электричество известно давно. Но природа проявления электрических явлений в живых организмах стала объектом наблюдения двести лет назад. И до сих пор некоторые явления, происходящие в живых организмах, недостаточно изучены. В нашей работе мы попытались систематизировать случаи проявления электрических взаимодействий в животной и растительной среде, проследить историю создания лейденской банки и ее дальнейшее использование в медицине.

1. История открытия животного электричества

1.1. Открытие Луиджи Гальвани

Всем известно что электричество вошло в нашу жизнь благодаря животным. С электрическими явлениями древние египтяне были знакомы еще четыре с половиной тысячи лет назад. Об этом свидетельствует надгробный памятник в Соккаре, на котором изображен электрический сом, живущий в верховьях Нила. Но лишь в итальянский профессор анатомии обнаружил, что электрические разряды заставляют подергиваться конечности мертвой лягушки. Это событие произошло отчасти случайно. Рассказывают, что синьоре Гальвани, жене болонского профессора анатомии, приходилось самой ходить в мясную лавку, где продавались и лягушачьи окорочка. История утверждает, что лягушачьи лапки, развешанные гроздьями на медных крючках, прикрепленных к железным перекладинам, поразили воображение синьоры Гальвани. К ее великому удивлению и ужасу, отрезанная лапка лягушки, касаясь железа, вздрагивала, точно живая. Утверждают, будто синьора так надоела мужу, рассказывая о напугавшем ее явлении, объясняя его близостью мясника с нечистой силой, что профессор решил провести наблюдения за лягушками у себя дома

В один из осенних вечеров 1789 г. итальянский естествоиспытатель и врач Луиджи Гальвани (1737-1798) делал опыты над мышцами лягушки. Особенно его интересовало действие на мускулы ног животного электрических разрядов, которые получали тогда от электрофорной машины. Препарированная лягушка (со снятой кожей) подвешивалась на медном крючке. Как только в мышцу конечности пропускали электрический разряд, мышца вздрагивала, сокращалась, лапка подпрыгивала.

Каково же было удивление ученого, когда он заметил, что сокращение мышц происходит и без воздействия электрических разрядов, а просто от соприкосновения с ножом, скальпелем или железной проволокой. Явление казалось загадочным.

После долгих поисков ему удалось доказать, что лапка лягушки сокращается и без всякого соприкосновения с металлом. Из тщательно поставленных опытов был сделан неоспоримый вывод, что в животных тканях образуется и собственное электричество. Классические опыты Гальвани сделали его отцом электрофизиологии. Гальвани, осуществив ряд экспериментов, пришел к выводу о существовании нового источника и нового вида электричества. Его привели к такому выводу опыты составления замкнутой цепи из проводящих тел и металлов (лучше всего по признанию самого учёного было использовать разные металлы, например железный ключ и серебряную монету) и лягушечного препарата.

После долгих научных изысканий Гальвани предположил, что мышца является своеобразной батареей лейденских банок, непрерывно возбуждаемой действием мозга, которое передается по нервам. Именно так и была рождена теория животного электричества, именно эта теория создала базу для возникновения электромедицины, и открытие Гальвани произвело сенсацию.

1.2.История изобретения первого источника постоянного тока

Вскоре этими вопросами заинтересовался другой итальянский ученый Алессандро Вольта (1745-1827).Вольта провёл ряд опытов и показал, что наблюдаемые явления связаны с наличием замкнутой цепи, состоящей из двух разнородных металлов и жидкости. Вольта считал причины «гальванизма» физическими, а физиологические действия – одними из проявлений этого физического процесса. Проведя опыты с разными парами электродов, Вольта установил, что физиологическое раздражение нервов тем сильнее, чем дальше отстоят друг от друга два металла в следующем ряду: цинк, оловянная фольга, олово, свинец, железо, латунь и т.д. до серебра, ртути, графита. Этот знаменитый ряд напряжений (активностей) Вольта и составлял ядро эффекта; мышца лягушки была лишь пассивным, хотя и очень чувствительным электрометром, а активными звеньями являлись металлы, от контакта которых и происходила их взаимная электризация.

Проводя многочисленные сравнительно-физиологические опыты, Вольта наблюдал у животных большую электрическую возбудимость нервов по сравнению с мышцами, а также гладкой мускулатуры кишечника и желудка по сравнению со скелетной. Он обнаружил (1792-1795) электрическую раздражимость органов зрения и вкуса у человека. Эти работы имели большое значение в истории методов физиологического эксперимента.

В 1800 г. Вольта изобрёл так называемый Вольтов столб – первый источник постоянного тока, состоявший из 20 пар кружочков из двух различных металлов, разделённых смоченными солёной водой или раствором щёлочи прослойками ткани или бумаги. Изобретение вольтова столба доставило Вольта всемирную славу и оказало огромное влияние не только на развитие науки об электричестве, но и на всю историю человеческой цивилизации. Вольтов столб возвестил о наступлении новой эпохи – эпохи электричества. Позднее такие элемен¬ты стали называть гальваническими.

Вольта был избран членом Парижской и других академий, Наполеон сделал его графом и сенатором Итальянского королевства. Именем Вольта названа единица электрического напряжения – вольт.

рис.1.Вольтов столб

Установив это, ученый изобрел первую электрическую батарею постоянного тока – Вольтов столб, который состоял из 20 пар медных и цинковых кружков, разделенных картонными прокладками, смоченными кислотой. Положительным электродом в этой батарее служил кружочек из меди, отрицательным – кружочек из цинка. Позднее такие элементы стали называть гальваническими.

Предоставим слово современнику той поры - выдающемуся французскому ученому Араго, написавшему биографию Вольты:

"В начале 1800 года вследствие теоретических соображений знаменитый профессор придумал составить длинный столб из кружков: медного, цинкового и мокрого суконного. Чего ожидать заранее от такого столба? Это собрание, странное и, по-видимому, бездействующее, этот столб из разнородных металлов, разделенных небольшим количеством жидкости, составляет снаряд, чуднее которого никогда не изобретал человек, не исключая даже телескопа и паровой машины".

Он поставил следующий эксперимент: четырех своих помощников он поставил на смолу, чтобы изолировать от земли. Первому из стоящих велел взять в мокрую правую руку цинковую пластинку, а левой коснуться языка своего соседа. Тот, в свою очередь, должен был мокрым пальцем коснуться глазного яблока следующего. Третий и четвертый держали в руках свежепрепарированную лягушку. И кроме того, у четвертого в свободной мокрой руке была зажата серебряная пластинка. Когда серебро касалось цинка, язык второго чувствовал кислый вкус, в глазу у третьего вспыхивало световое пятно, лапки лягушки между третьим и четвертым начинали дергаться. Превосходный результат! Разве не доказывает он, что никакого "животного электричества" не существует? Все дело в контакте различных металлов.

После статьи в "Физико-медицинском журнале" в 1794 г., где он утверждал, что надо говорить не о "животном" электричестве, а об электричестве "металлическом", оставалось дожидаться только одного: появления технического устройства из металлов, генерирующего электрический ток. Но идеи подобного устройства у Вольты в то время не было. Прошло пять лет, наполненных опытами, дискуссиями, размышлениями, сомнениями. Но вот в самом конце 1799 г. Вольта изготавливает источник электрического тока из двух разнородных металлов, разделенных влажным телом. Это был вольтов столб.

В Парижской академии наук организовали специальную комиссию по изучению гальванизма. В нее вошли самые известные ученые. Они соорудили по описаниям вольтов столб и повторили все эксперименты итальянского исследователя перед его приездом. Погрузив один из концов "электродвигательного прибора" в воду и присоединив к другому его концу металлическую проволоку, академики засовывали руку в чашку с водой и одновременно прикладывали второй электрод к языку, к веку, к кончику носа или на лоб. В момент замыкания цепи следовал такой удар, что некоторые чуть не лишались языка. Но... наука требует жертв. Ощущения были настолько неожиданными! При наложении проволоки на веко создавалось ощущение вспышки. А когда два электрода от противоположных полюсов батареи вставляли в уши, в голове раздавался шум... "Это было нечто вроде треска или лопанья, как если бы кипело какое-то масло или вязкое вещество", - писал сам Вольта. Он полагал, что в дальнейшем его прибор сможет послужить медикам для излечения болезней. Другого применения гальваническому электричеству он не представлял.

После опытов Гальвани ученые заинтересовались и “животным” электричеством, как его назвал Дюбуа Реймон (1818-1896). И. М. Сеченов (1829-1905), А. Ф. Самойлов, Б. Ф. Вериго и другие русские физиологи внесли значительный вклад в изучение этого интересного явления. В 1881 г. И. М. Сеченов в спинном и головном мозгу лягушки обнаружил так называемые спонтанные (сами собой возникающие) электрические колебания.

В 1882 г. Знаменитый русский физиолог Н. Е. Введенский впервые в мире с помощью телефона услышал биоэлектрические токи, возникающие в мышцах и нервах человека.

По мере того как совершенствовались электроизмерительные приборы, электрические токи (или биотоки) обнаруживались у все большего числа животных и растений. Из отдельных работ выросла специальная научная дисциплина – электрофизиология.

2..Электрические токи в живых организмах

2.1. Электрические рыбы

Люди узнали про электрических рыб довольно давно: ещё в Древнем Египте для лечения эпилепсии использовали электрического ската, анатомия электрического угря подсказала Алессандро Вольте идею его знаменитых батарей, а Майкл Фарадей первым рассчитал мощность “батарей” электрического угря: она равна 15 заряженным лейденским банкам с общей рабочей поверхностью элементов – 2250 квадратных метров.

Несмотря на то что во времена Фарадея техника регистрации токов была несовершенна, его опыты оказались безупречными.Электроды, которые Фарадей прикладывал к голове и хвосту рыб, были подключены к соленоиду со стальной иглой. В момент прохождения по соленоиду импульса тока игла намагничивалась, и по магнитным полюсам на концах иглы ученый определял полярность исследуемых участков тела рыб.

Рыбы используют разряды:чтобы освещать свой путь;для защиты, нападения и оглушения жертвы; - передают сигналы друг другу и обнаруживают заблаговременно препятствия.

Сначала биологи обнаружили странное поведение небольшой пресноводной рыбки – американского сомика. Он чувствовал приближение к нему металлической палочки в воде на расстоянии нескольких миллиметров. Английский ученый Ганс Лиссман заключал в парафиновую или стеклянную оболочку металлические предметы, опускал их в воду и рыбка чувствовала металл. Действительно, оказалось, что рыбы имеют специальные органы, которые воспринимают слабую напряженность электрического поля.

Проверяя чувствительность электрорецепторов у рыб, ученые проводили опыт. Закрывали аквариум с рыбкой темной тканью или бумагой и водили рядом по воздуху небольшим магнитом. Рыбка чувствовала магнитное поле. Потом исследователи просто водили возле аквариума руками. И она реагировала даже на самое слабое, создаваемое человеческой рукой, биоэлектрическое поле.

Рыбы не хуже, а порой и лучше самых чувствительных в мире приборов регистрируют электрическое поле и замечают малейшее изменение его напряженности. Рыбы, как оказалось, не только плавающие “гальванометры”, но и плавающие “электрогенераторы”. Они излучают в воду электрический ток и создают вокруг себя электрическое поле.С помощью электрических сигналов рыбы могут даже особым образом “переговариваться”. Угри, например, при виде пищи начинают генерировать импульсы тока определенной частоты, привлекая тем самым своих собратьев. А если двух рыб поместить в один аквариум, частота их электрических разрядов сразу же увеличивается.

В настоящее время известно, что из 20 тыс. современных видов рыб около 300 способны создавать и использовать биоэлектрические поля. По характеру генерируемых разрядов такие рыбы делятся на сильноэлектрические и слабоэлектрические и воспринимающие

Сильноэлектрические

Слабоэлектрические

Воспринимающие

Электрический угорь до 600 в

Электрический сом до 350 В

Электрический скат

Рыба-нож

Рыба-слон

Акулы

большинство скатов

Коньки

большинство сомов

Веслонос

2.1.1.Электрический угорь

Электрический угорь - рыба из , единственный вид рода Electrophorus . Населяют реки северо-восточной части и притоки среднего и нижнего течения .

Еще первые завоеватели Америки нашли свою смерть в непроходимых лесах и болотах Южной Америки. Но это не останавливало жадных до золота авантюристов. В джунгли отправлялись все новые и новые экспедиции.

Одному из таких отрядов удалось проникнуть в верховье Амазонки. Несколько месяцев плыли люди по реке, прежде чем достигли ее истоков. Дальше плыть стало невозможно, и отряд двинулся в джунгли по суше. Дорогу преграждали непроходимые заросли, страшные топкие болота. Все шло хорошо, пока отряд не достиг цепочки соединенных между собой мелких луж. Индейцы носильщики категорически отказались войти в воду. В глазах их отражался ужас. Европейцы никак не могли понять, в чем дело. Лужи были такие мелкие, что в них не могли прятаться ни крокодилы, ни гигантские анаконды. Гроза южноамериканских рек - рыбы пираньи также не могли здесь оказаться.

Один из европейцев пошел вперед, чтобы подать пример испуганным носильщикам. Но едва он сделал несколько шагов, как с нечеловеческим криком рухнул навзничь, точно сбитый с ног могучим ударом. Два товарища, бросившиеся ему на помощь, в ту же секунду оказались в грязи, опрокинутые все тем же невидимым противником. Лишь через час их спутники отважились осторожно войти в воду и вынесли на сушу пострадавших товарищей. Все трое остались живы, но продолжать путь отряд уже не мог. У жертв невидимого врага были парализованы ноги. К вечеру ноги понемногу начали двигаться, но только через несколько дней больные окончательно выздоровели. Отряд решил вернуться назад. Так впервые европейцы узнали еще об одной подводной электростанции, которая находится в теле довольно крупной рыбы – пресноводного угря. Теперь эти рыбы получили название электрических угрей. Размеры их 1,5 - 2 метра, а вес 15 - 20 килограммов. Живут они в мелких ручьях и болотах. Когда болота пересыхают, угри зарываются в ил, пока не наступит следующий сезон дождей.

Кожа у электрического угря голая, без чешуи, тело сильно удлинённое, округлое в передней части и несколько сжатое с боков в задней части. Окраска взрослых электрических угрей оливково-коричневая, нижняя сторона головы и горла ярко-оранжевая, край анального плавника светлый, глаза изумрудно-зелёные. Питается угорь в основном, мелкой рыбешкой. Электрический угорь - опаснейшая рыба среди всех электрических рыб. . В тех местах, в которых живет угорь, чаще всего большой недостаток кислорода. Поэтому у электрического угря появилась особенность поведения. Под водой угри находятся около 2 часов, а потом выплывают на поверхность и дышат там в течение 10 минут, тогда как обычным рыбам достаточно всплывать на несколько секунд. Электрический угорь агрессивен. Может напасть без предупреждения, даже если никакой угрозы для него не существует. Если что-то живое попадет в зону действия его силового поля, то угорь не станет прятаться или уплывать прочь. Электрические органы помогают угрю искать добычу: он испускает сравнительно слабые электрические импульсы, напряжение которых не превышает 40 - 50 вольт; эти низковольтные разряды помогают ему находить мелких морских обитателей, которыми угорь питается. Кроме того, электрические угри способны воспринимать электрические разряды друг друга - во всяком случае, когда один из них ударом электрического тока парализует жертву, к добыче устремляются и другие угри..

Европейцы знакомы с электрическим угрем с 1729 года. Английский ученый Фарадей первым рассчитал мощность “батарей” электрического угря: она равна 15 заряженным лейденским банкам с общей рабочей поверхностью элементов – 2250 квадратных метров.

Несмотря на то что во времена Фарадея техника регистрации токов была несовершенна, его опыты оказались безупречными.

Электроды, которые Фарадей прикладывал к голове и хвосту рыб, были подключены к соленоиду со стальной иглой. В момент прохождения по соленоиду импульса тока игла намагничивалась, и по магнитным полюсам на концах иглы ученый определял полярность исследуемых участков тела рыб.

Приблизившись к преследуемой жертве, угорь разряжает свой парализующий удар, действие которого до того сильно, что в одно мгновение все рыбы и крабы в районе распространения этого удара опрокидываются навзничь и становятся неподвижными. Тогда он выбирает себе подходящую жертву и проглатывает ее с помощью сильного всасывающего движения, производящего явственный шум.

Обращение с электрическим угрем - дело довольно опасное. В Лондонском зоопарке угорь однажды сильно ударил электрическим током служителя, который его кормил. Другой угорь начал генерировать электрические разряды, когда его переносили в металлической коробке, и служителю пришлось бросить коробку на землю. Но только при непосредственном контакте удар угря оказывается смертельным; однако пловец, оказавшийся в воде недалеко от места разряда, может утонуть, находясь в состоянии шока. . Мясо электрического угря в Южной Америке едят. Но ловить его опасно. Один из способов ловли рассчитан на то, что угорь, разрядивший свою батарею, надолго становится безопасен. Поэтому рыбаки поступают так: в реку загоняют стадо коров, угри нападают на них и расходуют свой запас электричества. Прогнав коров из реки, рыбаки бьют угрей острогами.

Подсчитано, что 10 тыс. угрей могли бы дать энергию для движения электропоезда в течение нескольких минут. Но после этого поезду пришлось бы стоять несколько суток, пока угри восстановили бы свой запас электрической энергии. Почти 4/5 длины всего тела занято электрическими органами, которые тянутся от заднего конца полости тела до конца хвоста, и на них приходится треть общего веса. Электрический орган, студневидная ткань, разделенная соединительными перегородками, занимает большую часть тела этой удивительной рыбы: до 5/6 ее длины и 3/8 веса. Положительный полюс – у головы, отрицательный – у хвоста. Собственно, электрических органов у угря всего до полумиллиона – это миниатюрные клетки, производящие электричество, соединенные нервами последовательно, благодаря этому разряд трехметрового угря достигает 650 вольт. Электрические клетки-пластинки сложены столбиками, которые соединены между собой параллельно, что увеличивает общую силу тока до двух ампер, а мощность – до киловатта!

Рис. 2. Клетки угря под микроскопом

Электрические разряды угря различны в зависимости от назначения. Они подразделяются на импульсы покоя, поиска, лова и защиты. Угорь, спокойно лежащий на дне, не генерирует электрических сигналов. Если угорь голоден, он медленно плавает, регулярно посылая импульсы напряжением до 50 В и длительностью около 2 мс. Количество таких разрядов может сильно варьировать, а форма импульсов характеризуется пологим (постепенным) подъемом. Когда угорь обнаруживает добычу, частота и амплитуда импульсов резко увеличиваются. Он начинает испускать серии из 50-400 импульсов напряженностью 300-600 В, продолжительностью 0,6-2,0 с. Чем меньше добыча, тем выше частота следования генерируемых импульсов. Он посылает импульсы до тех пор, пока не приводит жертву в состояние наркоза. Этого достаточно что бы парализовать большинство рыб, и даже животное размером с лошадь.Между разрядами наступают продолжительные паузы, во время которых энергия восстанавливается.


Рис.3.Электрический угорь

Рис. 4. Разряд электрического угря

Защитные импульсы угорь использует при встрече с врагом. В экспериментальных условиях они возникают, если угря потревожить палочкой. При этом рыба излучает серии редких импульсов высокого напряжения - обычно два (в некоторых случаях до семи) - и три поисковых импульса небольшой амплитуды.

2.1.2.Электрический сом.

Электрический сом (лат. Malapterurus electricus) - вид придонных пресноводных рыб из рода Malapterurus семейства Электрические сомы (Malapteruridae), обитающих в тропических и субтропических водоёмах Африки. Электрического сома причисляют к сильноэлектрическим рыбам.

Ритс.5.Электрический сом

Это довольно крупная рыба: длина отдельных особей превышает 1 метр. Масса крупной особи может составить 23 кг. Тело вытянутое. Голова несёт три пары усиков. Глаза маленькие, светящиеся в темноте. Окраска довольно пёстрая: тёмно-коричневая спина, буроватые бока и желтоватое брюхо. По телу разбросаны многочисленные тёмные пятна, грудные и брюшные плавники розовые, хвостовой плавник с тёмным основанием и широкой красной или оранжево-красной оторочкой. Спинного плавника у электрического сома нет. Грудные плавники не имеют колючек. Эти рыбы обитают в бассейне Ниле и реках Западной Африки . Электрические сомы представляют большую опасность для человека, чем электрические скаты. Электрические органы сома способны производить электрические разряды, напряжение которых достигает 360 вольт. Если человек дотронется до тела сома, то может мгновенно погибнуть. Существуют рассказы о том, что пойманная рыба, которая пролежала на воздухе несколько минут (заснувшая) может производить электрические разряды, которые способны парализовать взрослого человека.

У сома хвост заряжен положительно относительно головы. Напряжение и сила тока в отдельных импульсах разряда электрического сома длиной свыше 80см могут достигать 250В и 0,5А.

Залпы, производимые сомом при захвате и заглатывании мелкой добычи, относительно коротки - в среднем они состоят из 71 импульса. Продолжительность залпов и количество составляющих их импульсов увеличиваются, если сом атакует более крупную жертву. Так, сом длиной 16 см при захвате рыбы длиной 5,5 см генерирует залп в 1297 импульсов при средней продолжительности залпа 24,8 с. Таким образом, сом в каждом конкретном случае «выбирает» наиболее оптимальный режим разрядной деятельности.

Рис. 6. Разряд электрического сома

Напряжение разряда электрического сома в воде может достигать 350 В при силе тока в десятые доли ампера. Максимальная разность потенциалов при этом образуется между головой и хвостом рыбы. После относительно мощных разрядов его электрические органы нагреваются. Характер разрядов теснейшим образом связан с условиями среды (температурой, освещенностью, временем года) и состоянием самой рыбы.

Полярность электрических полей у сома и угря различна. Впервые структуру таких полей и направление в них тока определил в 1838 г. Фарадей. У многих рыб (гимнарха, рыбыножа, гнатонемуса) голова заряжается положительно, хвост – отрицательно, а вот у электрического сома, наоборот, хвост – положительно, а голова – отрицательно.

2.1.3.Электрические скаты

Рис.7..Электрический скат

Электрический скат упоминается во многих легендах, дошедших до нас из глубины веков; толкователи снов считали, что он предвещает близкое несчастье. Греки и римляне знали, что скат владеет источником какой-то странной энергии, и, поскольку электричество тогда не было известно, полагали, что источник ее - какое-то неведомое вещество. Существовало и еще одно поверье - будто скат, пойманный на бронзовый крючок, убивает забросившего снасть рыбака, причем смерть наступает от свертывания крови

Электрические скаты, обитающие и в умеренной, и в тропической зонах, способны создать на своих "электродах" напряжение до 50 вольт и выше; этого достаточно, чтобы убивать рыб и ракообразных, которыми питаются скаты. Электрический скат похож на гибкий блин с длинным и толстым хвостом. Охотясь, скат бросается на жертву всем телом и "обнимает" ее своими "крыльями", на концах которых находятся электрические органы. Объятие смыкается, "электроды" разряжаются - и скат убивает свою жертву разрядом тока.

Самый крупный из электрических скатов - это Torpedo nоbiliana, обитатель вод Северной Атлантики; в длину он достигает 1,8 метра, весит около 100 килограммов и способен создавать разность потенциалов в 200 вольт - этого достаточно, чтобы убить любое животное, оказавшееся в воде поблизости. Особая действенность электрического разряда в воде объясняется тем, что вода - хороший проводник электрического тока.

Скаты излучают разряды залпами, в каждом из которых насчитывается 2-10 и более импульсов. Продолжительность каждого 3-5 мс В отличие от электрического угря скаты не испускают слабых импульсов. В 1960 г. на выставке, организованной английским Научным королев¬ским обществом в честь 300-летия со дня его основания, среди загадок природы, которые человеку предстоит раскрыть, демонстрировался обычный стеклянный аквариум с находящейся в нем рыбой -электрическим скатом. К аквариуму через металлические электроды был подключен вольтметр. Когда рыба была в покое, стрелка вольтметра стояла на нуле. При движении рыбы вольтметр показывал напряжение, идостигавшее при активных движениях 400 В. Надпись гласила: "Природу этого электрического явления, наблюдавшегося задолго до организации английского королевского общества, человек разгадать до сих пор не может".

В момент излучения мощных импульсов как вне, так и внутри тела сильноэлектрических рыб проходят токи высокого напряжения. Почему же эти рыбы не подвергаются действию собственных разрядов? Подобная невосприимчивость объясняется тем, что в их теле находятся особые «электропровода» - участки, отличающиеся от соседних более высокой электропроводностью. Так, у мраморного электрического ската сопротивление участков кожи, покрывающих электрические органы, в 3-4 раза ниже, чем сопротивление участков кожи, покрывающих другие органы. Электрический ток в основном проходит через эти участки, почти не воздействуя на остальные.

В родной стихии скат не реагирует на разряды благодаря высокой электропроводности морской воды. Если же ската вынуть из воды, каждый разряд будет вызывать непроизвольное сокращение его мускулатуры.

2.1.4.Слабоэлектрические рыбы

Слабоэлектрические рыбы излучают серии почти непрерывных и ритмичных импульсов. Напряжение тока, генерируемого слабоэлектрическими рыбами, измеряется десятыми долями вольта. По характеру разрядов все эти рыбы могут быть подразделены на две группы.

К первой относят рыб, у которых разряды регулярные, монофазные, с относительно большой длительностью импульсов (2-10 мс). Частота следования импульсов варьирует от 60 до 940 в секунду. Среди рыб этой группы наиболее изучен гимнарх.

Рис.8 Гимнарх

Его разряды состоят из электрических импульсов, непрерывно следующих друг за другом с частотой приблизительно 300 импульсов в секунду. Импульсы гимнарха можно зарегистрировать и вне воды, если держать рыбу в воздухе, а электроды наложить непосредственно на кожу. Частота излучения электрических импульсов у гимнарха меняется только при изменении температуры воды (раздражение и физиологическое состояние не оказывают влияния). Наиболее четко проявляются разряды при температуре воды 28°.

Рис.9.Электрическое поле гимнарха (вид сверху).Рис 10. Одиночные импульсы гимнарха

Излучаемые гимнархом разряды состоят из отдельных монофазных импульсов длительностью 1,3 мс с интервалами 2,3 мс (рис. 10). Хвост рыбы становится электроотрицательным относительно головы. Разность потенциалов, возникающих на хвосте и голове,- сотые доли вольта.

Каждый разрядный импульс образует вокруг гимнарха характерное электрическое поле (рис. 9), оно расположено горизонтально по оси тела. Поле у головы и хвоста рыбы несимметрично - вокруг головы более растянуто, что обусловлено расположением электрических органов на хвосте гимнарха.

Наиболее типичный и хорошо исследованный представитель этой группы - африканский слоник. Его разряды состоят из отдельных двухфазных синусоидальных импульсов, амплитуда и частота следования которых зависят от степени возбуждения рыбы и факторов окружающей среды: температуры, освещенности, солености воды, присутствия различных объектов (рис. 10). Частота следования импульсов колеблется от 5 до 50 в секунду.


Рис.11.Африканский слоник. Рис 12.Импульсы африканского слоника

2.2. Электрические явления в мире растений

Электрические явления растений изучены на сегодняшний день недостаточно. Электрические импульсы растений - все еще весьма новая область исследований. В ней многое неизвестно, поэтому можно привести лишь одиночные примеры

Способность растений к опылению известно со времен Чарлза Дарвина. Одни цветки привлекают насекомых яркой окраской своих лепестков, другие - своим запахом, третьи имитируют образ привлекательных для спаривания насекомых... И вот новое открытие!

Группа ученых бристольской школы биологических наук (Bristol"s School of Biological Sciences) под руководством профессора Дэниела Роберта (Daniel Robert) обнаружила, что у растений есть своя система электрических сигналов, которая помогает им привлекать опылителей.

Известно, что растения окружены слабым электрическим током и несут отрицательный заряд. Шмели же несут на себе положительный заряд до 220 вольт. Из-за трения в воздухе о частицы взвешенной пыли они теряют часть своих электронов, поэтому, при подлете к цветку, возникает лишь небольшая электрическая сила, которая может передавать определенную информацию.

Ученые поместили в стеблях полусотни петуний электроды и обнаружили, что, когда пчела приземляется на цветок, его заряд на несколько минут становится положительным. Исследователи предполагают, что таким образом растение сообщает другим пчелам, что его нектаром уже полакомились. С другой стороны ученые были удивлены тем, что главным привлекающим фактором для насекомых является вовсе не аромат цветка, а его электрическое поле. Это выяснилось в результате следующего эксперимента.

Шмелей запустили на площадку с искусственными цветами. Одни из них имели положительный заряд и были обработаны сахарозой (аналог нектара). Другие цветки были заземлены и имели горький "нектар".Первоначально шмели садились на цветки с электрическим зарядом и сахарозой. Когда искусственные цветки отключили от электричества, шмели стали садиться на "сладкие" и "горькие" цветки в произвольном порядке. К тому же, вероятно, электрическое поле цветка усиливает для насекомого и привлекательность окраски его лепестков. Ученые собираются доказать, что способностью к электрорецепции обладают не только шмели, но также бабочки и мотыльки.

Первые бесспорные доказательства существования электрических процессов в растительных тканях были получены в середине XIX в. Так называемые токи повреждения обнаружились в различных растительных тканях. Срезы листьев, стебля, клубней всегда заряжены отрицательно по отношению к нормальной ткани.Если разрезать яблоко пополам и вынуть середину, то оба электрода, приложенные к кожуре, не выявят разницы потенциалов. Если же один электрод приложить к кожуре, а другой перенести во внутреннюю часть мякоти, гальванометр отметит появление тока повреждения.

Выяснилось, что в момент гибели некоторых растительных тканей их потенциал резко возрастает. Индийский исследователь Бос соединил внешнюю и внутреннюю части зеленой горошины с гальванометром и затем нагрел ее до температуры 60 °С. При этом был зарегистрирован электрический потенциал 0,5 В!

Были открыты электрические ритмы растений. Если поместить кончик корня молодого бобового растения в воду и измерить разность потенциалов между корнем и наружной средой, то эта величина колеблется с периодом 5 - 20 мин, причем амплитуда колебаний уменьшается по мере удаления от ко нчика корня, а частота сильно зависит от температуры окружающей средыСпособность многих цветов и листьев складываться или раскрываться в зависимости от времени суток также обусловливается электрическими сигналами, представляющими собой потенциал действия. Закрытие листьев можно стимулировать искусственно с помощью электрического раздражения.

Известна реакция многих цветов на механические раздражения - выделение нектара. Оказалось, что при механическом раздражении некоторых частей цветка возникают электрические импульсы, передающиеся по железистым клеткам в проводящие пучки, и, достигая нектарника, стимулируют его деятельность. Реакция нектарника очень быстрая: выделение нектара начинается сразу же после того, как насекомое садится на цветок.

Движения листьев мимозы тоже управляются с помощью электрической системы сигнализации. Бос установил, что если сочленовую подушечку мимозы раздражать короткими импульсами электрического тока, ее реакция (механическое движение) будет не мгновенной, а с запаздыванием на 0,1 с. Такая скорость реакции сравнима со скоростью реакции многих животных. Время складывания листа составляет около 3 с. После непродолжительного покоя лист начинает подниматься. Возвращение листа в исходное состояние занимает около 16 с. Если последовательные раздражения осуществлять слишком часто, наступает утомление - как и при раздражении мышцы животного.

2.3. Эффекты действия токов в теле человека

Тело человека – хороший проводник электрического тока. Сопротивление тела человека при нормальном кожном покрове составляет 3 – 100 кОм. Безопасным является электрический ток, длительное прохождение которого не причиняет организму вреда и не ощущается человеком.

По технике безопасности величина силы тока не должна превышать 50 мкА.

Человек способен ощущать электрический ток от 1 мА. Опасным ток становится - 0,01А(переменный), 0,05А (постоянный ток).При таком воздействии током человек способен разорвать электрическую цепь. Если сила тока выше данных значений, то для человека,это становится смертельно опасной Электропроводность кожи, через которую ток проходит главным образом по каналам потовых и отчасти сальных желез, зависит от трещин и состояния ее поверхностного слоя. Тонкая и особенно влажная кожа, а также кожа с поврежденным наружным слоем эпидермиса хорошо проводит ток. Наоборот, сухая огрубевшая кожа - весьма плохой проводник. Электрический ток, проходя через организм человека, возбуждает живые ткани организма. Степень возникающих изменений зависит от силы тока и его вида (переменный или постоянный).

Классификация токов по степени воздействия на человека

Воздействие, ощущение

Переменный, мА

Постоянный, мА

1. Предел ощущения (легкое покалывание)

0.6 – 1.2

5 – 8

Допустимый

2. Ощущаемый ток (острая боль, но можно оттолкнуть, отбросить токоведущую часть)

8 – 10

20 – 25

3. Не отпускающий (происходит судорожное сжатие мышц, человека необходимо отрывать от токоведущих частей)

20 – 25

50 – 80

Недопустимый

4. Фибриляционный электрический ток (смертельно опасный: нарушение работы сердца)

50 –100

250

2.3.2.Открытие лейденской банки

Лейденская банка- один из видов электрических конденсаторов,называется иногда банкой Клейста. Его электрическое действие впервые было апробировано на человеке. Лейденская банка была изобретена почти одновременно немецким физиком Клейстом и голландским физиком Мушенбруком в 1745 - 1746 гг. Свое название она получила по имени города Лейдена, где Мушенбрук впервые проделал с ней опыты по изучению электрических явлений.

Рис.13. Лейденская банка Рис.14..Первоначальная форма лейденской банки

Этот конденсатор имеет форму банки(рис.14), т. е. цилиндра с более или менее широким горлом или же просто цилиндра, обыкновенно стеклянного. Банка обклеена листовым оловом снаружи и внутри (наружная и внутренняя обкладки) примерно до 2 / 3 высоты и прикрыта деревянной крышкой, сквозь которую проходит проволока с цепочкой, частью ложащейся на дно банки, тоже оклеенное оловом внутри и снаружи. Такова была банка в первоначальном виде, когда ее устроил (1745) голландский физик Мушенброк и когда впервые испытал удар от разряда банки лейденский гражданин Кунеус.

.

Рис.14 . Голландский физик Питер Мушенброк

Мушенбрук так описывал свое изобретение в письме к французскому ученому Реомюру: «Хочу сообщить Вам новый, но ужасный опыт, который не советую повторять. Я занимался изучением электрической силы. Для этого я подвесил на двух шелковых голубых нитях железный ствол, получающий электричество от стеклянного шара, который быстро вращался вокруг оси и натирался руками. На другом конце висела медная проволока, конец которой был погружен в стеклянный круглый сосуд, заполненный наполовину водой, который я держал в правой руке; левой же рукой я пытался извлекать из электрического ствола искру. Вдруг моя правая рука была поражена ударом с такой силой, что все тело содрогнулось, как от удара молнии.Несмотря на то что сосуд, сделанный из тонкого стекла, не разбивается и кисть руки обычно не смещается при таком потрясении, тем не менее локоть и все тело поражаются столь страшным образом, что я не могу выразить словами, я думал, что пришел конец».

В 1745 г. Эвальд Георг фон Клейст (1700 – 1748) уже 24-й год занимал должность декана (старшего священника) собора в маленьком городке Каммин в Померании. До этого он получил образование в университетах Лейпцига и Лейдена (Голландия), где обучался юриспруденции.

В свободное от служб в соборе время Клейст потихоньку ставил электрические опыты, используя в качестве источника электричества электростатическую машину. Однажды Клейст решил зарядить железный гвоздь. 11 октября 1745 г. он вставил его для изоляции в медицинскую склянку и поднес его к кондуктору работающей электростатической машины; спустя некоторое небольшое время гвоздь должен был зарядиться. Для того чтобы вытащить гвоздь из склянки, Клейст, держа склянку в одной руке, другой взялся за головку гвоздя и получил ощутимый электрический удар. Клейст наполнил склянку вначале спиртом, потом ртутью и повторил опыт. Удары усилились. Они приводили в содрогание всю руку и плечо.

Вскоре лейденская банка была усовершенствована: внешнюю и внутреннюю поверхность стеклянного сосуда стали обклеивать металлической фольгой(рис13). В крышку банки вставляли металлический стержень, который сверху заканчивался металлическим шариком, а нижний конец стержня при помощи металлической цепочки соединялся с внутренней обкладкой.

В июне 1772 года член Королевского общества и английского парламента сэр Джон Уолш приехал во Францию с лейденской банкой и дал местным рыбакам возможность ощутить прелесть ее физиологического воздействия, спрашивая при этом, схоже ли оно с воздействием нарковых скатов. Ответы были единодушно утвердительными. Воздействие ската передавалось через замкнутую цепь людей и прекращалось при малейших разрывах цепи или при включении в нее изоляторов.

За помощью в решении этого сложнейшего вопроса Джон Уолш обращается к самому легендарному физику Великой Британии - сэру Генри Кавендишу, человеку незадолго до этого экспериментально проверившему закон, который позже был назван именем Кулона. Кавендиш изготовил дипольную модель, имитирующую ската. Используя батарею из 49 лейденских банок, соединенных в семь параллельных столбов, удалось вызвать физиологический эффект от модели не только в воздухе, но и в морской воде.

Так в 1773 году Уолш с помощью Кавендиша доказал электрическую природу разрядов электрических рыб. Кавендиш предположил, что электрические органы представляют собой батарею из большого числа маленьких слабозаряженных лейденских банок. Описывая пути протекания токов в проводящей среде, он предложил идею силовых линий и первым изобразил электрическое поле ската. Одним из важнейших последствий изобретения лейденской банки явилось установление влияния электрических разрядов на организм человека, что привело к зарождению электромедицины это было первое сравнительно широкое практическое применена электричества, сыгравшее большую роль в углублении изучении электрических явлений.

Опыт Мушенбрука был преведен в присутствии французского короля аббатом Нолле. Он образовал цепь из 180 гвардейцев взявшихся за руки, причем первый держал банку в руке, а последний прикасался к проволоке, извлекая искру. «Удар почувствовался всеми в один момент; было курьезно видеть разнообразие жестов и слышать мгновенный вскрик десятков людей». От этой цепи солдат и произошел термин «электрическая цепь».

При проведении исследований с банкой было установлено (в 1746 г. англичанином Б. Вильсоном), что количество электричества, собираемое в банке, пропорционально размеру обкладок и обратно пропорционально толщине изоляционного стоя. В 70-х гг. XVIII в. металлические пластины стали разделять не стеклом, а воздушным промежутком - так, появился простейший конденсатор.

В 1746 г. профессор физики Лейпцигского университета Иоганн Генрих Винклер с большим энтузиазмом принялся повторять опыт с лейденской банкой. По окончании опыта он говорил, что у него были сильные конвульсии в теле и дважды кровотечения из носа, чего с ним прежде никогда не бывало. С его женой, тоже попробовавшей на себе действие зарядов лейденской банки, случилось то же самое.

2.3.4.Первые исследования действия тока на тело человека

Как мы видели выше, уже Мушенбрук, описывая изобретение лейденской банки, обратил внимание на сильное и необычное действие электрического разряда на человека.

Первые опыты по действию на тело электрического тока был выполнен племянником - Джованни Альдини. Прославился он тем, что смешал серьёзное исследование с леденящим душу зрелищем. Он практиковал так называемые электрические пляски, проявлявшиеся в форме публичных экспериментов, которые были призваны подчеркнуть эффективность электрического возбуждения для получения спазматических движений мускулов, для демонстрации этого использовались отсеченные головы казненных преступников. Он предложил вниманию широкой публики эксперимент над телом казненного убийцы Джорджа Форстера. . в Лондоне была его самая выдающаяся демонстрация, а именно гальванические экзерсисы с купленным телом повешенного убийцы. Он подсоединял полюса 120-вольтного аккумулятора к телу казненного убийцы Джорджа Форстера, после чего тело пустилось в омерзительный пляс. Когда он подсоединял провода к лицу, оно корчилось в жутких гримасах, левый глаз открывался, как будто хотел посмотреть на своего учителя. Некоторые зрители боялись, что преступник на самом деле оживет, и тогда придется казнить его снова. Газета London Times писала: «Несведущей части публики могло показаться, что несчастный вот-вот оживет».

Рис..15. Опыты Джованни Альдини

Вот как был описан этот опыт Альдини, одним из его современников: «Восстановилось тяжелое конвульсивное дыхание; глаза вновь открылись, губы зашевелились и лицо убийцы, не подчиняясь больше никакому управляющему инстинкту, стало корчить такие странные гримасы, что один из ассистентов лишился от ужаса чувств и на протяжении нескольких дней страдал настоящим умственным расстройством».

Вольта повторил перед Наполеоном опыты по оживлению отрезанных членов с помощью малых количеств электричества. "Я делал их не только над лягушками, но и над угрями и над другими рыбами, над ящерицами, саламандрами, змеями и, что важнее, над мелкими теплокровными животными, именно над мышами и птицами", - писал ученый в 1792 году, в самом начале исследований, приведших в итоге к великому изобретению. Представьте себе разнообразные отрезанные части различных животных, лежащие совершенно недвижно, как и подобает отрезанным членам, из коих вытекла жизненная сила. Малейшее прикосновение Вольтова столба - и плоть оживает, трепещет, сокращается и содрогается. Были ли в истории науки опыты, более потрясающие воображение?

В 1801 году в Париже произошло яркое событие, неоднократно описанное историками науки: в присутствии Наполеона Бонапарта состоялось представление работы "Искусственный электрический орган, имитирующий натуральный электрический орган угря или ската" с демонстрацией модели этого органа. Наполеон щедро наградил автора: в честь ученого была выбита медаль и учреждена премия в 80 000 экю. Все ведущие научные общества того времени, включая Петербургскую академию наук, изъявили желание видеть его в своих рядах, а лучшие университеты Европы были готовы предоставить ему свои кафедры. Позднее он получил титул графа и был назначен членом сената Королевства Италия. Речь идет об Алессандро Вольте и его изобретении - Вольтовом столбе, прообразе всех современных батарей и аккумуляторов. Вскоре этим действием заинтересовались врачи. Возникла мысль о том, что в живом организме существуют электрические токи, которые играют в нем какую-то важную роль. Вместе с этим пришло убеждение о возможности применения электричества для лечения болезней.

С этой целью стали производить опыты по электризации людей, пропусканию через тело человека электрического тока и т. д.

В начале прошлого столетия известный французский ученый профессор Ледюк сделал замечательное открытие. Он установил, что прерывистый постоянный электрический ток умеренной силы, пропускаемый через головной и спинной мозг, не убивает животное, а приводит его в состояние глубокого сна с потерей подвижности и чувствительности. Это состояние было названо ученым электрическим наркозом. Наркотизирующий ток не опасен: если его выключить, животное быстро просыпается и кажется вполне нормальным.

Профессор Ледюк изобрел аппарат, главная деталь которого - особый прерыватель тока, проходящего через тело подопытного животного.

Испытав действие своего аппарата на животных, Ледюк решил испытать его пригодность для наркоза людей. Первый опыт он сделал на себе. Однако полного наркоза осуществить не удалось, так как сердце ученого начало плохо работать уже при силе тока в 4 миллиампера, а по расчету для наркоза требовалось не менее 7 миллиампер. Узнав о действии электронаркоза на сердце, Ледюк отказался от опытов на людях, решив, что аппарат и сама методика еще недостаточно усовершенствованы, и стал производить систематические эксперименты на животных.

Однако опыты на людях производились другими учеными. Замечательнее всего оказалось, что тот же, обычно наркотизирующий, ток в некоторых случаях был способен восстанавливать жизнедеятельность организма.

В 1787 г. английский врач и физик Адаме впервые создал специальную электростатическую машину для лечебных целей. Ею он широко пользовался в своей медицинской практике (рис. 16) и получал положительные результаты, которые можно объяснить и стимулирующим действием тока, и психотерапевтическим эффектом, и специфическим действием разряда на человека.

Эпоха электростатики и магнитостатики, к которой относится все, о чем говорилось выше, завершается разработкой математических основ этих наук, выполненной Пуассоном, Остроградским, Гауссом.

Рис. 16. Сеанс электролечения (со старинной гравюры)

Использование электрических разрядов в медицине и биологии получило ши рокое обсуждение и споры.

Интерес к использованию электричества в медицине возрастал. Руанская академия объявила конкурс на лучшую работу

«Электричество в живых организмах»


Что такое, кем открыто, что собой представляет электричество

Впервые на электрический заряд обратил внимание Фалес Милетский. Он провел эксперимент, потер янтарь шерстью, после таких простых движений янтарь стал обладать свойством, притягивать мелкие предметы. Это свойство больше походит не на электрические заряды, а на магнетизм. Но в 1600 году Гильберт установил различие между этими двумя явлениями.

В 1747 - 53 Б. Франклин изложил первую последовательную теорию электрических явлений, окончательно установил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине 18 в. началось количественное изучение электрических и магнитных явлений. Появились первые измерительные приборы - электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов (работы Кавендиша были опубликованы лишь в 1879). Этот основной закон электростатики (Кулона закон) впервые позволил создать метод измерения электрических зарядов по силам взаимодействия между ними.

Следующий этап в развитии науки об Э. связан с открытием в конце 18 в. Л. Гальвани "животного электричества"

Главным ученым в изучении электричества и электрических зарядов является Майкл Фарадей. С помощью опытов он доказал, что действия электрических зарядов и токов не зависят от способа их получения. Также в 1831 Фарадей открыл индукцию электромагнитную - возбуждение электрического тока в контуре, находящемся в переменном магнитном поле. В 1833 - 34 Фарадей установил законы электролиза; эти его работы положили начало электрохимии.

И так, что же такое электричество. Электричество - это совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Явление электричество можно встретить почти везде.

К примеру, если сильно потереть пластмассовую расческу о волосы, то к ней начнут прилипать кусочки бумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. При трении янтаря, пластмассы и ряда других материалов в них возникает электрический заряд. Само слово «электрический» происходит от латинского слова electrum, означающего «янтарь».

Откуда же берется электричество

Все окружающие нас объекты содержат миллионы электрических зарядов, состоящих из частиц, находящихся внутри атомов - основы всей материи. Ядро большинства атомов включает два вида частиц: нейтроны и протоны. Нейтроны не имеют электрического заряда, в то время как протоны несут в себе положительный заряд. Вокруг ядра вращаются еще одни частицы - электроны, имеющие отрицательный заряд. Как правило, каждый атом имеет одинаковое количество протонов и электронов, чьи равные по величине, но противоположные заряды уравновешивают друг друга. В результате мы не ощущаем никакого заряда, а вещество считается незаряженным. Однако, если мы каким-либо образом нарушим это равновесие, то данный объект будет обладать общим положительным или отрицательным зарядом в зависимости от того, каких частиц в нем останется больше - протонов или электронов.

Электрические заряды влияют друг на друга. Положительный и отрицательный заряды притягиваются друг к другу, а два отрицательных или два положительных заряда отталкиваются друг от друга. Если поднести к предмету отрицательно заряженную леску, отрицательные заряды предмета переместятся на другой его конец, а положительные заряды, наоборот, переместятся поближе к леске. Положительные и отрицательные заряды лески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процесс называется электростатической индукцией, и о предмете говорят, что он попадает в электростатическое поле лески.

Что такое, кем открыто, что собой представляют живые организмы

Живые организмы - главный предмет изучения в биологии. Живые организмы не только вписались в существующий мир, но и изолировали себя от него при помощи специальных барьеров. Среда, в которой образовались живые организмы, является пространственно – временным континуумом событий, то есть совокупностью явлений физического мира, которая определяется характеристиками и положением Земли и Солнца.

Для удобства рассмотрения все организмы распределяются по разным группам и категориям, что составляет биологическую систему их классификации. Самое общее их деление на ядерные и безъядерные. По числу составляющих организм клеток их делят на одноклеточные и многоклеточные. Особое место между ними занимают колонии одноклеточных.

На все живые организмы, т.е. на растения и животные действуют абиотические факторы среды (факторы неживой природы), особенно температура, свет и увлажненность. В зависимости от влияния факторов неживой природы, растения и животных делят на различные группы и у них появляются приспособленности к влиянию этих абиотических факторов.

Как уже было сказано, живые организмы распределяются на большое количество. Сегодня мы рассмотрим живые организмы, на разделе их на теплокровных и хладнокровных:

с постоянной температурой тела (теплокровные);

с непостоянной температурой тела (хладнокровные).

Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся). Организмы с постоянной температурой тела (птицы, млекопитающие).

Чем связаны физика и живые организмы

Понимание сущности жизни, ее возникновения и эволюции определяет все будущее человечества на Земле как вида живого. Конечно, в настоящее время накоплен огромный материал, осуществляется его тщательное изучение, особенно в области молекулярной биологии и генетики, есть схемы или модели развития, есть даже практическое клонирование человека.

Более того, биология сообщает множество интересных и важных подробностей живых организмах, упуская что-то принципиальное. Само слово «физика», по Аристотелю, означает «физис» - природа. Действительно, вся материя Вселенной, а следовательно мы сами, состоит из атомов и молекул, для которых уже получены количественные и в целом правильные законы их поведения, в том числе и на квантово-молекулярном уровне.

Тем более, что физика была и остается важным фактором общего развития изучения живых организмов в целом. В этом смысле физика как феномен культуры, а не только как область знания, создает наиболее близкое для биологии социокультурное понимание. Вероятно, именно в физическом познании отражены стили мышления. Логико-методологические аспекты познания и самой естественной науки, как известно, почти целиком основаны на опыте физических наук.

Поэтому задача научного познания живого, может быть, и состоит в обосновании возможности применения физических моделей и представлений к определению развития природы и общества также на основе физических закономерностей и научного анализа получаемых знаний о механизме процессов в живом организме. Как говорил еще 25 лет тому назад М.В. Волькенштейн, «в биологии как науке о живом возможны только два пути: либо признать невозможным объяснение жизни на основе физики и химии, либо такое объяснение возможно и его надо найти, в том числе на основе общих закономерностей, характеризующих строение и природу материи, вещества и поля».

Электричество в различных классах живых организмах

В конце XVIII века знаменитые ученые Гальвани и Вольта обнаружили электричество у животных. Первыми животными, на которых ученые делали опыт, чтобы подтвердить свое открытие, были лягушки. На клетку воздействуют различные факторы внешней среды - раздражители: физические - механические, температурные, электрические;

Электрическая активность оказалась неотъемлемым свойством живой материи. Электричество генерирует нервные, мышечные и железистые клетки всех живых существ, однако наиболее развита эта способность у рыб. Рассмотрим явление электричество у теплокровных живых организмах.

В настоящее время известно, что из 20 тыс. современных видов рыб около 300 способны создавать и использовать биоэлектрические поля. По характеру генерируемых разрядов такие рыбы делятся на сильноэлектрические и слабоэлектрические. К первым относятся пресноводные южноамериканские электрические угри, африканские электрические сомы и морские электрические скаты. Эти рыбы генерируют очень мощные разряды: угри, например, напряжением до 600 вольт, сомы - 350. Напряжение тока крупных морских скатов невысоко, поскольку морская вода является хорошим проводником, но сила тока их разрядов, например ската Торпедо, достигает иногда 60 ампер.

Рыбы второго типа, например, мормирус и другие представители отряда клюворылообразных не излучают отдельных разрядов. Они посылают в воду серии почти непрерывных и ритмичных сигналов (импульсов) высокой частоты, этого поля проявляется в виде так называемых силовых линий. Если в электрическое поле попадает объект, отличающийся по своей электропроводности от воды, конфигурация поля изменяется: предметы с большей проводимостью сгущают вокруг себя силовые лилии, а с меньшей - рассредоточивают. Рыбы воспринимают эти изменения с помощью электрических рецепторов, расположенных у большинства рыб в области головы, и определяют местонахождение объекта. Таким образом эти рыбы осуществляют подлинную электрическую локацию.

Почти все они охотятся преимущественно ночью. Некоторые из них обладают плохим зрением, поэтому в процессе длительной эволюции и выработался у этих рыб такой совершенный способ для обнаружения на расстоянии пищи, врагов, различных предметов.

Приемы, используемые электрическими рыбами при ловле добычи и обороне от врагов, подсказывают человеку технические решения при разработке установок для электролова и отпугивания рыб. Исключительные перспективы открывает моделирование электрических систем локации рыб. В современной подводной локационной технике пока не существует систем поиска и обнаружения, которые работали бы по образцу и подобию электролокаторов, созданных в мастерской природы. Учеными многих стран ведется упорная работа по созданию подобной аппаратуры.

ЗЕМНОВОДНЫЕ

Для изучения протекания электричества в земноводных возмем опыт Гальвани. В своих опытах он использовал задние лапки лягушки, соединенные с позвоночником. Подвешивая эти препараты на медном крючке к железным перилам балкона, он обратил внимание, что, когда конечности лягушки раскачивались ветром, их мышцы сокращались при каждом прикосновении к перилам. На основании этого Гальвани пришел к выводу, что подергивания лапок были вызваны «животным электричеством», зарождающимся в спинном мозге лягушки и передаваемым по металлическим проводникам (крючку и перилам балкона) к мышцам конечностей. Против этого положения Гальвани о «животном электричестве» выступил физик Александр Вольта. В 1792 г. Вольта повторил опыты Гальвани и установил, что эти явления нельзя считать «животным электричеством». В опыте Гальвани источником тока служил не спинной мозг лягушки, а цепь, образованная из разнородных металлов – меди и железа. Вольта был прав. Первый опыт Гальвани не доказывал наличия «животного электричества», но эти исследования привлекли внимание ученых к изучению электрических явлений в живых организмах. В ответ на возражение Вольта Гальвани произвел второй опыт, уже без участия металлов. Конец седалищного нерва он набрасывал стеклянным крючком на мышцу конечности лягушки – и при этом также наблюдалось сокращение мышцы. В живом организме осуществляется и ионная проводимость.

Образованию и разделению ионов в живом веществе способствует наличие воды в белковой системе. От него зависит диэлектрическая постоянная белковой системы.

Носителями зарядов в этом случае являются ионы водорода - протоны. Только в живом организме все виды проводимости реализуются одновременно.

Соотношение между разными проводимостями меняется в зависимости от количества воды в белковой системе. Сегодня люди еще не знают всех свойств комплексной электропроводности живого вещества. Но ясно то, что именно от них зависят те принципиально отличные свойства, которые присущи только живому.

На клетку воздействуют различные факторы внешней среды - раздражители: физические - механические, температурные, электрические.

Знали ли Вы, что некоторые растения используют электричество, а некоторые виды рыб ориентируются в пространстве и оглушают добычу с помощью электрических органов?

: В издании «Nature» шла речь о том, как в растениях передаются электрические импульсы. В качестве ярких примеров на ум сразу приходят венерина мухоловка и мимоза стыдливая, у которых движение листьев вызывается электричеством. Но существуют и другие примеры.

«Нервная система млекопитающих передает электрические сигналы со скоростью до 100 метров в секунду. Растения живут в более медленном режиме. И хотя у них нет нервной системы, некоторые растения, такие как мимоза стыдливая (Mimosa pudica ) и венерика мухоловка (Dionaea muscipula ), используют электросигналы, провоцирующие быстрое движение листьев. Передача сигнала в этих растениях достигает скорости 3 см в секунду - и эта скорость сопоставима со скоростью нервных импульсов в мышцах . На странице 422 данного выпуска , автор Мусави и его коллеги исследуют интересный и не до конца понятный вопрос о том, как растения генерируют и передают электрические сигналы . Авторы называют два протеина, схожих с глутаматными рецепторами, которые являются важнейшими компонентами процесса индукции электрической волны, провоцируемой ранением листа. Она распространяется на соседние органы, заставляя их усиливать защитные реакции в ответ на потенциальную атаку травоядных».

Кто бы мог подумать, что, срезая лист, можно спровоцировать электрический сигнал? Эксперименты над растением резуховидка Таля продемонстрировали отсутствие реакции при воздействии на лист , однако при поедании листа возникал электрический сигнал, распространяющийся со скоростью 9 см в минуту.

«Передача электрического сигнала была наиболее эффективна в листьях, расположенных непосредственно над или под раненным листом, - отмечается в статье. – Эти листья соединены между собой сосудистым руслом растения, по которому передается вода и органические компоненты, а также отлично передаются сигналы на дальние расстояния» . Полученный сигнал включают в гене защитные компоненты. «Эти невероятные наблюдения отчетливо демонстрируют, что генерация и передача электрического сигнала играет важнейшую роль в инициации защитных реакций в отдаленных объектах при нападении травоядных».

Авторы оригинальной статьи не затрагивали тему эволюции, если не считать предположения о том, что «глубоко законсервированная функция этих генов, возможно , является связующим звеном между восприятием повреждений и периферийными защитными реакциями». Если это так, что эта функция, должно быть «существовала еще до расхождения в развитии животных и растений».

Электрические рыбки : Два новых вида электрических рыб были найдены в бассейне реки Амазонка, однако они оснащены электричеством по-разному. Одна из них, как и большинство остальных электрических рыб, двухфазна (или является источником переменного тока), а другая – монофазна (является источником постоянного тока). В одной из статей издания «Science Daily» рассматривались эволюционные причины, по которым это устроено именно так, и интересно то, что «эти хрупкие рыбки производят импульсы всего в несколько сотен милливольт с помощью органа, который немного выступает из волокнистого хвоста». Этот импульс слишком слаб, чтобы убить жертву, как это делает знаменитый электрический угорь, однако эти импульсы читаются представителями других видов, и используются представителями противоположного пола для общения. Рыбки используют их для «электролокации» в сложной водной среде ночью» . Что касается их эволюции, то эти две рыбы настолько похожи, что их относят к одному виду, и единственным различием является разница в электрической фазе их сигналов.

Существует огромное количество способов получать информацию об окружающем мире: прикосновение, взгляд, звук, запах, а теперь еще и электричество. Мир живой природы – это чудо общения между отдельными организмами и их окружением. Каждый орган чувств тонко сконструирован и несет огромную пользу для организма. Утонченные системы не являются результатом слепых неконтролируемых процессов. Мы верим, что если рассматривать их, как системы, созданные в соответствии с разумным замыслом, это ускорит процесс исследования, поможет искать понимания высшего замысла и имитировать их, чтобы усовершенствовать сферу инженерии. А настоящим препятствием в развитии науки является такое предположение: «О, этот организм эволюционировал только потому, что он эволюционировал». Это усыпляющий подход, обладающий снотворным воздействием.

С древних пор люди знают, что существуют «электрические» рыбы, например угорь или скат, которые создают разряд, подобный разряду конденсатора. И вот профессор анатомии университета в городе Болонье Луиджи Гальвани (1737—1798) решил выяснить, не обладают ли такой способностью другие животные. В 1780 г. он препарировал мертвую лягушку и вывесил на балкон для просушки лапку этой лягушки на медной проволоке. Ветер раскачивал лапку, и Гальвани заметил, что, прикасаясь к железным перилам, она сокращается, совсем как у живого существа. Из этого Гальвани сделал ошибочный (как потом выяснили) вывод, что мышцы и нервы животных вырабатывают электричество.

Вывод этот был неправилен в случае лягушки. Между тем рыбы, вырабатывающие электричество, причем в немалом количестве, существуют и достаточно распространены. Вот что пишет об этом ученый, специалист в этой области Н. И. Тарасов.

В теплых и тропических морях, в реках Африки и Южной Америки живут несколько десятков видов рыб, способных временами или постоянно испускать электрические разряды разной силы. Своим электрическим током эти рыбы пользуются не только для защиты и нападения, но и для того, чтобы сигнализировать друг другу и обнаруживать заблаговременно препятствия (локации). Электрические органы встречаются только у рыб. Если бы они были у других животных, ученым давно бы это стало известно.

Электрические рыбы существуют на Земле уже миллионы лет. Их останки найдены в очень древних слоях земной коры. На древнегреческих вазах встречаются изображения электрического морского ската - торпедо.

В сочинениях древнегреческих и древнеримских писателей и натуралистов немало упоминаний о чудесной, непонятной силе, которой наделен торпедо. Врачи Древнего Рима держали этих скатов у себя дома в больших аквариумах. Они пытались использовать торпедо для лечения болезней: пациентов заставляли прикасаться к скату, и от ударов электрического тока больные будто бы выздоравливали.

Даже в наше время на побережье Средиземного моря и Атлантическом берегу Пиренейского полуострова пожилые люди бродят иногда по мелководью - надеются излечиться от ревматизма или подагры «целительным» электрическим торпедо.

Электричество у торпедо вырабатывается в особых органах - «электрических батареях». Они находятся между головой и грудными плавниками и состоят из сотен шестигранных столбиков студенистого вещества. Столбики отделены друг от друга плотными перегородочками, к которым подходят нервы. Верхушки и основания столбиков соприкасаются с кожей спины и брюха. Нервы, подходящие к электрическим органам, сильно развиты и имеют внутри «батарей» около полумиллиона окончаний.
За несколько десятков секунд торпедо испускает сотни и тысячи коротких разрядов, идущих потоком от брюха к спине. Напряжение тока у разных видов скатов колеблется от 80 до 300 В при силе тока 7 - 8 А.

В водах наших морей живут некоторые виды колючих скатов - райя, или, как их у нас называют, морские лисицы. Действие электрических органов у этих скатов гораздо слабее, чем у торпедо. Можно предполагать, что слабые, но хорошо развитые электрические органы райя служат им для связи друг с другом и играют роль беспроволочного телеграфа.

Недавно ученые установили, что африканская пресноводная рыбка гимнархус всю жизнь непрерывно испускает слабые, но частые электрические сигналы. Ими гимнархус как бы прощупывает пространство вокруг себя. Он уверенно плавает в мутной воде, среди водорослей и камней, не задевая телом ни за какие препятствия. Такой же способностью наделены и «слаботочные» родственники электрического угря - южноамериканские гимноты и африканская рыбка мормиропс.

В восточной части тихоокеанских тропических вод живет скат дископиге глазчатый. Он занимает как бы промежуточное положение между торпедо и колючими скатами. Питается скат мелкими рачками и легко их добывает, не применяя электрического тока. Его электрические разряды никого не могут убить и, вероятно, служат ему лишь для того, чтобы отгонять от себя хищников.

Электрические органы есть не только у скатов. Тело африканского речного сома - малаптеруруса, обернуто, как шубой, студенистым слоем, в котором образуется электрический ток. На долю электрических органов приходится около четверти веса всего сома. Напряжение разрядов этой рыбы достигает 360 В; оно небезопасно для человека и, конечно, гибельно для рыб.

В Индийском, Тихом и Атлантическом океанах, в Средиземном и Черном морях живут небольшие рыбки, похожие на бычков, - звездочеты. Обычно они лежат на прибрежном дне, подкарауливая проплывающую сверху добычу. Поэтому их глаза, расположенные на верхней стороне головы, смотрят вверх. Отсюда и происходит их название. Некоторые виды звездочетов имеют электрические органы, которые находятся в глазной впадине и служат, вероятно, лишь для сигнализации.

В южноамериканских тропических реках живет электрический угорь. Это серо-синяя змееобразная рыба длиной до 3 м. На долю головы и грудобрюшной части приходится всего 1/5 ее тела, а вдоль 4/5 тела с обеих сторон расположены сложные электрические органы. Они состоят из 6 000 - 7 000 пластинок, отделенных друг от друга тонкой оболочкой и изолированных прокладками из студенистого вещества. Пластинки образуют своего рода батарею, дающую разряд по направлению от хвоста к голове. Ток угря достаточен, чтобы убить в воде рыбу или лягушку. Плохо приходится и людям, купающимся в реке: электрический орган угря дает напряжение в несколько сот вольт. Особенно сильное напряжение тока дает угорь, когда он изгибается дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо.

Электрический разряд угря привлекает других угрей, находящихся поблизости. Этим свойством угрей можно пользоваться и искусственно. Разряжая в воду любой источник электричества, удавалось привлекать целое стадо угрей, надо было только подобрать соответствующее напряжение тока и частоту разрядов.

Подсчитано, что 10 000 угрей могли бы дать энергию для движения электропоезда в течение нескольких минут. Но после этого поезд стоял бы несколько суток, пока угри не восстановили бы свою электрическую энергию